

Grade 11S – Physics

Unit Two: Mechanics

Chapter 9: System of Particles

ACADEMY

Prepared & Presented by: Mr. Mohamad Seif

Consider two particles: A of mass $m_1 = 3kg$ its position vector is given by $\vec{r}_A = -3t\vec{\iota} + 3t^2\vec{\jmath}$ and B of mass $m_2 = 2kg$ whose position vector is given by $\vec{r}_B = 2t\vec{\iota} - 2t^2\vec{\jmath}$ in SI units.

Studying Particle A:

- 1. Calculate the position of A at t=0, 1, and 2 seconds.
- 2. Determine the equation of trajectory of A.
- 3. Determine the nature of motion of A.
- 4. Determine the speed of A when its ordinate y = 12 m.
- 5. Determine the resultant of the forces acting on A.

System of particles 20 min

$$\mathbf{m_1} = 3\mathbf{kg}, \vec{r}_A = -3t\vec{i} + 3t^2\vec{j}, \mathbf{m_2} = 2\mathbf{kg}, \vec{r}_B = 2t\vec{i} - 2t^2\vec{j}$$

1. Calculate the position of A at t=0, t=1, and at t=2 seconds.

At
$$t_0 = 0$$
: $\vec{r}_{0A} = -3(0)\vec{\iota} + 3(0)^2\vec{j}$

$$\vec{r}_{0A} = 0$$

At
$$t_1 = 1s$$
: $\vec{r}_{1A} = -3(1)\vec{i} + 3(1)^2\vec{j}$ \Rightarrow $\vec{r}_{1A} = -3\vec{i} + 3\vec{j}$

$$\vec{r}_{1A} = -3\vec{\iota} + 3\vec{\jmath}$$

At
$$t_2 = 2s$$
: \vec{r}_1

At
$$t_2 = 2s$$
: $\vec{r}_{1A} = -3(2)\vec{i} + 3(2)^2\vec{j}$ \Rightarrow $\vec{r}_{2A} = -6\vec{i} + 12\vec{j}$

$$\vec{r}_{2A} = -6\vec{\iota} + 12\vec{j}$$

$$\mathbf{m_1} = 3\mathbf{kg}, \vec{r}_A = -3t\vec{i} + 3t^2\vec{j}, \mathbf{m_2} = 2\mathbf{kg}, \vec{r}_B = 2t\vec{i} - 2t^2\vec{j}$$

2. Determine the equation of trajectory of A.

$$x=-3t$$

$$x = -3t \qquad \qquad t = -\frac{x}{3}$$

Substitute in y

$$y=3t^2$$

$$y = 3t^2 \qquad \qquad y = 3\left[-\frac{x}{3}\right]^2$$

$$y=\frac{x^2}{3}$$

3. Determine the nature of motion of A

$$\vec{r}_A = -3t\vec{\iota} + 3t^2\vec{\jmath} \qquad \vec{V}_A = -3\vec{\iota} + 6t\vec{\jmath} \qquad \qquad \vec{V}_A = -3t\vec{\iota} + 6t\vec{\iota} + 6t\vec{\iota} \qquad \qquad \vec{V}_A = -3t\vec{\iota} + 6t\vec{\iota} \qquad \qquad \vec{V}_A = -3t\vec{\iota} + 6t\vec{\iota} \qquad \qquad \vec{V}_A = -3t\vec{\iota} + 6t\vec{\iota$$

$$\vec{V}_A = -3\vec{\imath} + 6tj$$

$$\vec{a}_A = 6\vec{j}$$

Since a>0, then the motion of A is U.A.R.M

20 min

$$\mathbf{m_1} = 3\mathbf{kg}, \vec{r}_A = -3t\vec{i} + 3t^2\vec{j}, \mathbf{m_2} = 2\mathbf{kg}, \vec{r}_B = 2t\vec{i} - 2t^2\vec{j}$$

4. Determine the speed of A when its ordinate y = 12 m.

$$y = 3t^2$$
 12 = $3t^2$ $t^2 = 4$

$$12 = 3t^2$$

$$t^2=4$$

$$t = 2sec$$

$$\overrightarrow{V}_A = -3\overrightarrow{\iota} + 6t\overrightarrow{j} \implies \overrightarrow{V}_A = -3\overrightarrow{\iota} + 6(2)\overrightarrow{j} \implies \overrightarrow{V}_A = -3\overrightarrow{\iota} + 12\overrightarrow{j}$$

$$\vec{\mathbf{V}}_A = -3\vec{\imath} + 6(2)\vec{\jmath}$$

$$\vec{V}_A = -3\vec{\imath} + 12\vec{\jmath}$$

$$V_A = \sqrt{V_x^2 + V_y^2}$$

$$V_A = 12.36 m/s$$

$$\mathbf{m_1} = 3\mathbf{kg}, \vec{r}_A = -3t\vec{i} + 3t^2\vec{j}, \mathbf{m_2} = 2\mathbf{kg}, \vec{r}_B = 2t\vec{i} - 2t^2\vec{j}$$

5. Determine the resultant of the forces acting on A.

$$\sum \vec{F}_{ex/A} = m_1 \vec{a}_A$$

$$\sum_{Fex/A} \vec{F}_{ex/A} = 3(6\vec{j}) \times \vec{F}_{ex/A}$$

$$\sum_{Fex/A} \vec{F}_{ex/A} = 18\vec{j}$$

Particle B:

- 1. Determine the acceleration vector of B and deduce the resultant of the forces acting on B.
- 2. Determine the radius of curvature of the trajectory of B at t = 1 s.

System of particles 20 min

$$m_1 = 3kg, \vec{r}_A = -3t\vec{i} + 3t^2\vec{j}, m_2 = 2kg, \vec{r}_B = 2t\vec{i} - 2t^2\vec{j}$$

1. Determine the acceleration vector of B and deduce the resultant of the forces acting on B.

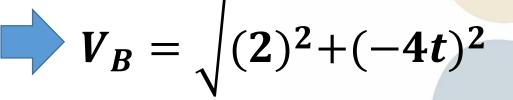
$$\vec{r}_B = 2t\vec{\iota} - 2t^2\vec{j} \qquad \vec{V}_B = 2\vec{\iota} - 4t\vec{j} \qquad \vec{a}_B = -4\vec{j}$$

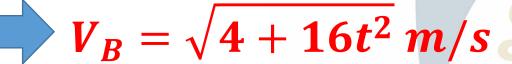
$$\vec{V}_B = 2\vec{\imath} - 4t\vec{j}$$

$$\overrightarrow{a}_B = -4\overrightarrow{j}$$

$$\sum \vec{F}_{ex/B} = m_2 \vec{a}_B \qquad \sum \vec{F}_{ex/B} = 2(-4\vec{j}) \qquad \sum \vec{F}_{ex/B} = -8\vec{j}$$

$$\sum_{I} \vec{F}_{ex/B} = 2(-4\vec{j})$$


$$\sum \vec{F}_{ex/B} = -8$$


20 min

2. Determine the radius of curvature of the trajectory of B at t = 1 s.

$$\overrightarrow{V}_B = 2\overrightarrow{\iota} - 4t\overrightarrow{j}$$

$$a_t = V_B' = \frac{32t}{2\sqrt{4+16t^2}}$$

$$a_t = \frac{8t}{\sqrt{1+4t^2}} m / s^2$$

$$8(1)$$

$$a_t = \frac{8(1)}{\sqrt{1+4(1)^2}} = 3.57m / s^2$$

$$a_n^2 = a^2 - a_n^2$$

$$a_n^2 = (4)^2 - (3.57)^2$$


$$a_n = 1.80m/s^2$$

$$a_n = 1.80m/s^2$$

$$a_n = \frac{V^2}{R}$$

$$R = \frac{V^2}{a_n} = \frac{\left[\sqrt{4 + 16t^2}\right]^2}{1.80}$$

System A + B:

- 1. Determine the position vector of the center of mass G of the system [A+B].
- 2. Determine the acceleration vector of the center of mass G of the system [A + B].
- 3.Deduce the resultant of the forces acting on G.

ACADEMY

20 min

$$\mathbf{m}_1 = 3\mathbf{kg}, \vec{r}_A = -3t\vec{\imath} + 3t^2\vec{\jmath}, \mathbf{m}_2 = 2\mathbf{kg}, \vec{r}_B = 2t\vec{\imath} - 2t^2\vec{\jmath}$$

1. Determine the position vector of the center of mass G of the system [A+B].

$$\vec{r}_G = \frac{m_1 \vec{r}_A + m_2 \vec{r}_B}{m_1 + m_2}$$

$$\vec{r}_G = \frac{3(-3t\vec{i}+3t^2\vec{j})+2(2t\vec{i}-2t^2\vec{j})}{3+2}$$

$$\vec{r}_G = \frac{-9t\vec{i} + 9t^2\vec{j} + 4t\vec{i} - 4t^2\vec{j}}{5}$$

$$\vec{r}_G = -t\vec{\iota} + t^2\vec{j}$$


2. Determine the acceleration vector of the center of mass G of the system [A + B].

$$M.\vec{a}_G = \sum \vec{F}_{ex/A} + \sum \vec{F}_{ex/B}$$

$$(3+2)\overrightarrow{a}_G = -18\overrightarrow{j} + 8\overrightarrow{j}$$

$$5\vec{a}_G = -10\vec{j}$$

$$\vec{a}_G = -2\vec{j}$$

Be Smart Academy

